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Grazing Angle Proton Scattering: Effects on Chandra
and XMM-Newton X-Ray Telescopes

Bronislaw K. Dichter and Stanley Woolf, Member, IEEE

Abstract-A proton scattering process resulted in damage to particles with the conduction band electrons in the target ma-
one of the Chandra X-ray telescope's focal plane detectors. In this terial. This type of process leads to temporary damage that can
process, incident protons were transmitted, by scattering off the be reversed with time or by annealing the material. The NIEL
telescope mirrors, to the focal plane. We identify the proton popu-
lation responsible for the damage and, using a proper grazing angle process consists of collisions with the nuclei in the material lat-
formalism, we show that the standard calculations of grazing angle tice. Any such collision that results in the energy transfer greater
scattering will significantly under predict the expected proton flux than about 30 keV can knock the target atom from its location in
at the focal plane. the lattice. The result of this collision, one atom in an interstitial

Index Terms--Chandra X-ray telescope CCD radiation damage. location and one vacancy in the lattice, is called a Frankel defect
and is the most common type of bulk damage. Frankel defects
act as charge carrier traps, removing electrons from the charge

I. INTRODUCTION collection process. Protons with energy above a few keV haveS EVERAL weeks into the Chandra X-ray telescope mission, sufficient energy to cause this defect. The probability of causing
unexpected damage was observed to one of its cameras [1]. the defect increases with energy up to about 100 keV and then

The problem was identified as radiation damage to the front il- decreases with increasing energy with an energy dependence of
luminated charge coupled detectors (CCD) the advanced CCD l/E [4].
imaging spectrometer (ACIS). The amount of damage was or- The ACIS configuration of its 10 CCDs is shown in Fig. 1.
ders of magnitude larger than was to be expected this early Eight of the CCDs are front illuminated (FI), with the charge
in the mission. This event resulted in intensive study of the transfer gate region directly exposed to incident particles trans-
transmission of protons through the Chandra and the European mitted through the grazing optics of the telescope. Two are back
XMM-Newton X-ray telescopes [2] using the Monte Carlo com- illuminated (BI) and have the body of the device shielding the
puter code Geant4 [3]. Both of these instruments utilize grazing gate region. ACIS operates with a thin Polyamide film, with a
incidence mirrors to focus the X-rays onto the CCD cameras in light blocking aluminum coating upstream of the CCDs. The
the focal plane. total mass density of the film and aluminum is sufficient to stop

In this paper, we will identify the particle population respon- protons with E < 80 keV. During the first few weeks of the
sible for the damage and show that the transmission calculations mission, the FI CCDs suffered a degradation of performance.
of [2] use a model of proton scattering beyond its range of va- The measure of the small inefficiency in transferring electrons
lidity, leading to a significant underprediction of the transmis- from one pixel to another during the readout cycles, or charge
sion probability. We will present grazing angle scattering data transfer inefficiency (CTI), was increasing far more rapidly than
and calculations and compare them to results computed using expected for the FI CCDs. The CTI for the BI CCDs remained
the same methods as are used in Geant4. Finally, we will discuss unchanged. The ACIS CCD integral proton fluence computed
the effect that correct calculation of grazing angle scattering has for the Chandra orbit is shown in Fig. 2. Our calculations as-
on the calculated fluxes that reach the Chandra and XMM focal sume that the incident proton population has an access path to
planes and suggest a way of obtaining more accurate results. the CCDs that does not degrade its spectral shape. We will jus-

tify this in Section IV. Electron fluences are not a concern be-
Il. RADIATION DAMAGE TO CCDs ON CHANDRA cause the low energy electrons (E < 100 keV) are swept away

by the ACIS broom magnets and the higher energy electrons
Energy loss in Si solid state detectors, such as CCDs falls into are both far less numerous and are highly inefficient producers

two classes ionizing and nonionizing energy loss (NIEL). Ion- of Frankel defects. The FI CCDs can be divided into Region A,
izing energy loss is due to the distant collisions of the incident the same length as BI CCDs, and remainder, Region B. Both BI

and FI region A are sensitive to flux fA = 1.65 x 107 protons/cm
2_s corresponding to E > 80 keV. The region B, however is
only sensitive to fB = 2.37 x 101 protons/cm 2_S corresponding
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Gate Region

Fig. I. Configuration of the front and back illuminated CCDs in the Chandra instrument focal plane. Region A corresponds to the first 45 pm of Si facing the
incident particles. Back illuminated device gate region is shielded from transmitted protons by the upstream region A. Front illuminated devices do not have such
shielding.
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Fig. 2. Integral proton fluence and range in Si plotted as a function of energy. Proton models are described in [5].

by computing (R), the average range of protons in Si, weighted In the next section will show how the proton transmission from
by the incident particle flux f(E) outside the spacecraft to the CCDs takes place.

R -f R(E)f(E) dE()

(R.=(E) dE EII. STANDARD CALCULATIONAL METHODS
f f(E) dE The XMM team has used the Monte Carlo code Geant4 to

where R(E) is the proton range [6]. The computed value is calculate the proton transmission probability. We have chosen
(R) = 4.8 pm and most of the incident protons will stop within to use to use another well-established Monte Carlo code,
4.8 Am of surface, in or near the highly sensitive gate region. MCNPX [8] to treat energetic proton scattering. Both Geant4
This distance corresponds to the range of a 300 keV proton, thus and MCNPX use condensed collision physics to compute the
all protons with E < 300 keV will deposit their full energy in energy loss and angular scattering of a particle by considering
the gate region, protons with E =400 keV will deposit 315 keV the incident proton's collisions with atomic electrons and
and the much less numerous 2 MeV protons, 130 keV. Thus, if with atomic nuclei. Geant4 uses a "mixed" multiple scattering
the external protons have access to the CCDs, the bulk of the algorithm [3] to predict proton energy loss and scattering angle,
damage will occur in the first few microns. This is verified by while the MCNPX physics for determination of angular deflec-
the work of one group [7] that has directly linked CTI increase tions is based on Rossi's Gaussian model [9], and in the energy
to damage to the buried channel component of the CCD, located range of interest here, a continuous-slowing-down energy loss
a fraction of a micron beneath the gate region. model. In both Geant4 and MCNPX models, more numerous

We have shown that if the external protons have direct ac- collisions with electrons result in small angular scattering and
cess to the CCDs, the population with energies in the range of a small energy loss per collision. Less frequent collisions with
100-500 keV is responsible for the damage of the FI CCDs. target nuclei result in comparatively large scattering angles and
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Fig. 3. Energy distributions of scattered 210 keV protons (aluminum target). Fig. 4. Comparison of measured and computed energy loss of grazing
Data curve is extracted from Winter et al. [ 12]. Specular scattering is for angle incidence protons (aluminum target) as a function of incident energy. Measured
of incidence of 0.5'. "All angles" is for scattering between 00 and 900. most probable energy loss values [12] are all in the region between the two

horizontal lines (all values were approximately 3 kcV in the energy range of
50 to 710 keV). Due to the symmetry of the measured energy loss distributions

energy losses. Each collision in this approach is considered to [13], the measured most probable value is very close to the average value.
be independent of the others and it is the sum of all the small,
random changes in angle and energy that accounts for the final fore striking the surface material. The differences between the
incident particle scattering angle and degraded energy. two approaches are evident in Fig. 3. In this figure, the mea-

These procedures, and their underlying physics models, were sured energy spectrum of 210 keV protons scattered off alu-
initially developed for thin foil and bulk material scattering of minum [12] is shown along with the results from an MCNPX
protons and alpha particles [10]. While these scattering models calculation. As expected the MCNPX results have broad, low
are valid for moderately large angles of incidence, or cases energy tail from the numerous high energy loss collisions with
where the incident particle is traveling in the bulk material, the atomic nuclei in the target material. A comparison of calcu-
the fundamental assumption of independence of the collisions lated and measured energy losses for protons incident on alu-
is not valid for grazing angles of incidence. In addition, the minum as a function of incident energy is shown in Fig. 4. The
assumption that the incident particle will enter into the bulk MCNPX calculated values show a much larger energy losses
material, if the particle trajectory is not exactly parallel with than the data. The agreement is even worse when the measured
respect to the surface, is also not valid. In the next section most probable values, which are very nearly average values,
we will present a conceptually correct way to handle grazing are compared to MCNPX average values. The effect of using
incidence beam-target interactions, the standard model of scattering when treating grazing angle

scattering is the prediction of energy loss distributions that are

IV. GRAzING ANGLE SCATTERING highly asymmetric and very broad. This is true for MCNPX and
the for the methods used in Geant4. The overall effect is for

A. Energy Loss codes like MCNPX and Geant4 to predict larger energy losses

In the past decade, grazing angle angular specular and near than actually occur in the scattering process.
specular scattering has been studied as a means of deducing the
properties of the scattering surface. Song and Wang [11] com-
puted trajectories of grazing incidence protons incident on a Angular scattering of the grazing incidence protons cannot be
carbon surface. Their work showed that, in general, the incident reproduced by the physics models used in Geant4 and MCNPX.
particles traveled only through the electron plasma cloud outside These models assume that the proton does not react with the
the surface before being reflected (no collisions with atomic nu- scattering surface until it enters and then is scattered as if it were
clei). Furthermore, the lengths of trajectories inside the plasma traversing bulk material. In fact, the work of Song and Wang
cloud were only weakly dependent on the energy and angle of [11 ] shows the incident proton interacts with the surface long
incidence. This result provides an explanation for the experi- before it strikes it. In some cases the proton is reflected before
mental results obtained by Winter et al. [ 12] and Pfanzender and it strikes the surface. For larger angles of incidence, the proton
Stolzle [13] that the most probable energy loss for a wide range only enters the electron cloud that extends into the vacuum to a
of energies 30 < E < 710 keV is of the order of 3 keV and does distance of a few nanometers out from the material surface. In
not depend on the angle of incidence. In addition, the energy general, for grazing angle scattering, the incident protons do not
spectra of the reflected protons are dominated by a Gaussian enter the bulk material at all.
peak, centered on the most probable energy loss, with only small The angular scattering of grazing angle incidence protons
probabilities for greater energy losses, from a flat surface is dominated by a process with: 1) an en-

Standard approach to scattering calculations cannot repro- ergy loss small compared to the incident energy and 2) angular
duce the effect of grazing angle trajectories that are reflected be- scattering characterized by weak interaction with the electron
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10 for the mirror materials. However, the overall grazing scattering
C MCNPX Calcutations results depend only weakly on the scattering surface properties

- Flmov FormuIa Calculation[ and will not change significantly for the mirror materials.

SJ Oinc 0.20 MCNPX and Geant4 calculations underestimate the effect of
protons on focal plane instruments for two reasons.

. 1) The codes will overestimate the energy loss of protons,
I othus shifting to the spectrum of transmitted protons to a

0.1 higher incident energy. This effectively reduces the calcu-
lated number of protons reaching the focal plane instru-
ments since the magnetospheric incident proton spectrum
in falls off rapidly with energy.

0.01 2) The codes will calculate too large scattering angles thus
0 2 4 8 8 10 directly decreasing the number of transmitted protons.

Scattering Angle (degrees) The ideal solution would to add the proper treatment of grazing

Fig. 5. Angular scattering distributions of 120 keV protons incident on angle scattering to the MCNPX and Geant4 codes. However,
aluminum calculated using MCNPX and Firsov distributions for two angles this may be a very major task and not easily accomplished. A
of incidence. good way of computing the upper limit of proton fluence in the

focal plane is to assume that the protons undergo specular scat-
plasma cloud. In this case the proper scattering response is that tering with no energy loss, in effect they behave like photons.
given by Firsov [14] This approach will lead to only a slight overestimation of focal

3 (,00)3/2 plane fluences.
N(b, 9) = 2 (¢ o (2)

27rVb 4,3 +9 (2)
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